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Abstract: An effective synthesis of enantiopure (-)-exe-triqxlo[SZ.I .@fi]deca-4,8-dien-3-one exe-l. is 
realized starting from enantiopure (-)endo-1 applying Diels-Alderlretro-Diels-Alder methodology. The 
unusually high exe-stereoselectivity observed 6 the [4+2]-cycloaddition of (-)-et&-I with cyclopentadiene 
has been evaluated by semi-empirical AM1 transition state calculations. 

Endo- and exo-tricyclo[5.2.1.~~6]decadienones 1 have great potential as synthetic building blocks in 

cyclopentenoid natural product synthesisl. The e&o-tricyclodecadienone system, e&o-l, both racemic and 

enantiopure2, is readily accessible, however, its exocongener, exe-1, has only been obtained as a racemic 

mixture and in low yield after laborious syntheses 3*4. For our studies on the steric and electronic features of 

the endo- and exe-tricyclodecadienone systems 1, we needed an effective synthesis of both racemic and 

enantiopure exe-1. For this purpose, we explored the Diels-Alder reaction of enantiopure (-)-e&o-l with 

cyclopentadiene and studied the thermal cycloreversion of its major adduct (-)-a. On thermodynamic and 

(-)-en&-l (-)-exo-1 w&! 

kinetic grounds we reasoned that cycloreversion of 2a, would preferably lead to formation of exo-1. AM1 

energy calculations’ show that exe-1 is thermodynamically slightly more stable than e&-l, while, on the 

basis of microscopic reversibility, [4+2]-cycloreversion of endo-adducts is expected to be kinetically favored 

over that of exe-adducts. Hence, thermal cycloreversion of enantiopure & under suitable conditions may give 

access to enantiopure exe-1. 

Cookson and co-workers4 studied the Diels-Alder reaction of (f)-tricyclodecadienone endo- with 

cyclopentadiene in the presence of aluminum chloride as catalyst. The formation of endo-anti-exe-adduct & 

and endo-anti-endo-adduct B was reported, however, without mention of exact yields or ratios. 

Treatment of a mixture of enantiopure (-)-endo-tricyclodecadienone endo-lk (0.72 g. [a]u= -140.3O 

(c=OS48,MeOH)) and 0.2 equiv. of dry aluminum chloride in 15 ml dry benzene for four hours at room 
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(-)-20 (73%) 
end&nti-exo 

(-)-2b (14%) 
endo-anti-en& 

(-)-al 
endo-anti-exe 

(+x0-1 (62%) (-)-endo- (9%) 

(a) 2 equiv. cyclopentadiene, 0.2 equiv. AK&, benzene, R.T. ,4 h; (b) o-dichbrobenzene, reflux, 17 h. 

Scheme 1. Synthetic mute to enantiopute (-)-exe-tricyclodecadienone 1. 

temperature with 2 equiv. of cyclopentadiene gave a mixture of two adducts in 89% yield (Scheme 1A6). 

Separation was accomplished by flash chromatography” to yield the pure diasteteomers (-)-&a9 (0.76 g, 

[c&= -441.2” (c=O668,CHCl~)) and (-)-~JJ*~‘~ {0.15 g, [alo= -278.7=’ (c=0.590,CHC13)) in 73% and 14% 

yield, respectively. Neither en&-syn-endo- nor en&-syn-exe-adduct was detected in the reaction mixture. 

Thermal cycloreversion of endo-anti-exe-adduct (-)-a (0.30 g) was most conveniently carried out by 

heating it in o-dichlorobenzene for 17 hours at 180 OC (Scheme 1B6). Desired (-)-exe-1 was formed in 62% 

yield together with 9% of (-)-en&& This result shows that the endo-norbornene moiety in & is indeed 

preferentially cleaved in this cycloreversion reaction. Removal of solvent and (-)-e&-L (0.02 g) by flash 

chromatography7b gave optically pure (-)+x0-1 *J1 (0.13 g, [aID= -200S” (c=O.578,MeOH)} in 45% overall 

yield starting from enantiopure (-)-e&o-l. 

Attempts to convert (-)-e&o-l to (-)-exe-1 in a one-pot procedure applying cyclopentadiene in 

o-dichlorobenzene at 180 OC in a sealed tube with or without aluminum chloride resulted in either complete 

recovery of (->-endo-l or considerable decomposition. 

The observation of a highly stereoselective exe-addition of cyclopentadiene to norbomene annelated 

cyclopentenone endo- contrasts sharply the moderate to strong preference of cyclopentadiene for 

endo-addition to monocyclic cyclopentenones l2 Recently, a second example of predominant exe-addition to . 

endo- was reported by Takano et al.‘j who applied 6-methoxy-l-vinyl-3,4dihydronaphthaIene (Dane’s 

diene) as the diene. To shed light on this unusual exe-stereoselectivity of endo- in the [4+2]-cycloaddition 

reaction, semi-empirical AM1 transition state calculations5*13 were carried out for all four conceivable 

Diels-Alder products 2. The calculated TS bond distances between the interacting atoms a, a* and p, p* 

confirm the anticipated concerted character of this cycloaddition in all cases, the 8-P’ bond being somewhat 

stronger than the a-a’ bond for && and the en&-syn-exe-adduct, due to a more effective orbital overlap. 

Strong steric congestion near the P-8’ bond in the transition state leading to the endo-syn-endo-adduct is 

responsible for the somewhat stronger u-a’ bond and somewhat weaker B-8’ bond in this case. The calculated 

heats of activation are in agreement with the observed exe-anti-stereoselectivity. The transition state leading 

to en&-anti-exe-adduct & is 0.91 kcal/mol more stable than that producing en&-anti-endo-adduct a. 
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Table 1. Calculated TS-Pro 
Reactibn of end&_ with Cyclopentiene. 

p foq the Diel+lder Table 2. Calculated TS-Roperties for the 
Cyclorkrsion of&. 

product AI-L. ’ d(a.a*) b d@.B’) c product &CL. d(a,a*) b d(B.B*) c 

enab-anti-exe-& + 31.90 2.16 2.11 et&-l. + 55.84 2.16 2.11 

endo-anti-ena%-& + 32.81 2.14 2.10 t?XO-1 + 54.95 2.15 2.10 

endo-syn-end0 + 46.53 2.08 2.18 *Heatofactiwianinkcal/hol bdistancabe~mi 

endo-syn-6x0 + 42.02 2.16 2.12 ltomsamda*inTSin A =ibidfa~lmd~*. 

Moreover, the experimental (i.e. 5.2: 1) and calculated (i.e. 4.7:1)” ratios of a:& are in good agreement. The 

transition states leading to syn-adducts. in which the diene must add at the sterically hindered concave face of 

endo-& a~ highly destabilized. and accordingly no syn-adducts were formed. These calculations demonstrate 

that the observed era-anti-stereoselectivity is inherent to the Spatial arrangement of the atoms in 

endo-tricyclodecadienone end&& A directing influence of the Cs-C, double bond in endo- on the 

endokxo-stereoselectivity of its Diels-Alder reaction with cyclopentadienc can be ruled out, since both 

en&-l and its 89-hydrogenated analog display a strong exe-stereoselectivity in their [4+2]-cycloaddition 

with cyclopentadiene4. The somewhat higher heat of activation calculated for the end&anti-endo-transition 

state can probably be attributed to steric interaction of the C, and C, protons in endo-l with cyclopentadiene, 

which is mom severe in the en&- than in the exe-addition mode. Apparently this steric effect is large enough 

to overrule the electronically favored en&addition. 

Transition state calculations similarly confirm that the observed regioselective fragmentation of the 

e&-fused norbomene moiety in the cycloreversion of & is also inherent to the spatial arrangement of its 

atoms (Table 2). It is kinetically preferred over fragmentation of the exe-fused norbornene ring since it 

involves a larger loss of steric strain and it is thermodynamically favored because it leads to 

thermodynamically mom stable ~~0-1. In this case however, the observed selectivity (i.e. 6.9:1) is 

significantly higher than that predicted by the difference in the calculated heats of activation (i.e. 2.7: 1)‘s. 

The above results show that enantiopuxe exe-aicyclodecadienone (-)-e.xo-1 can conveniently be 

synthesized in good yield from readily available enantiopure (-)-en&l in a simple two-step procedure. 

Furthermore, semi-empirical AM1 calculations show that endo-tricyclodecadienone en&-l typically 

undergoes exe-addition in Diels-Alder reactions. 
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~oulehnol, T = 298 f. 
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